Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Adv Biol Regul ; 87: 100940, 2023 01.
Article in English | MEDLINE | ID: covidwho-2259007

ABSTRACT

The role of IL-7 and IL-7R for normal lymphoid development and an adequately functioning immune system has been recognized for long, with severe immune deficiency and lymphoid leukemia as extreme examples of the consequences of deregulation of the IL-7-IL-7R axis. In this review, we provide an update (focusing on the past couple of years) on IL-7 and IL-7R in health and disease. We highlight the findings on IL-7/IL-7R signaling mechanisms and the, sometimes controversial, impact of IL-7 and its receptor on leukocyte biology, COVID-19, acute lymphoblastic leukemia, and different solid tumors, as well as their relevance as therapeutic tools or targets.


Subject(s)
Interleukin-7 , Receptors, Interleukin-7 , Humans , COVID-19 , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Signal Transduction
2.
Expert Syst Appl ; 2142023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2095342

ABSTRACT

Neurologic disability level at hospital discharge is an important outcome in many clinical research studies. Outside of clinical trials, neurologic outcomes must typically be extracted by labor intensive manual review of clinical notes in the electronic health record (EHR). To overcome this challenge, we set out to develop a natural language processing (NLP) approach that automatically reads clinical notes to determine neurologic outcomes, to make it possible to conduct larger scale neurologic outcomes studies. We obtained 7314 notes from 3632 patients hospitalized at two large Boston hospitals between January 2012 and June 2020, including discharge summaries (3485), occupational therapy (1472) and physical therapy (2357) notes. Fourteen clinical experts reviewed notes to assign scores on the Glasgow Outcome Scale (GOS) with 4 classes, namely 'good recovery', 'moderate disability', 'severe disability', and 'death' and on the Modified Rankin Scale (mRS), with 7 classes, namely 'no symptoms', 'no significant disability', 'slight disability', 'moderate disability', 'moderately severe disability', 'severe disability', and 'death'. For 428 patients' notes, 2 experts scored the cases generating interrater reliability estimates for GOS and mRS. After preprocessing and extracting features from the notes, we trained a multiclass logistic regression model using LASSO regularization and 5-fold cross validation for hyperparameter tuning. The model performed well on the test set, achieving a micro average area under the receiver operating characteristic and F-score of 0.94 (95% CI 0.93-0.95) and 0.77 (0.75-0.80) for GOS, and 0.90 (0.89-0.91) and 0.59 (0.57-0.62) for mRS, respectively. Our work demonstrates that an NLP algorithm can accurately assign neurologic outcomes based on free text clinical notes. This algorithm increases the scale of research on neurological outcomes that is possible with EHR data.

3.
JMIR Form Res ; 6(6): e33834, 2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1910865

ABSTRACT

BACKGROUND: Delirium in hospitalized patients is a syndrome of acute brain dysfunction. Diagnostic (International Classification of Diseases [ICD]) codes are often used in studies using electronic health records (EHRs), but they are inaccurate. OBJECTIVE: We sought to develop a more accurate method using natural language processing (NLP) to detect delirium episodes on the basis of unstructured clinical notes. METHODS: We collected 1.5 million notes from >10,000 patients from among 9 hospitals. Seven experts iteratively labeled 200,471 sentences. Using these, we trained three NLP classifiers: Support Vector Machine, Recurrent Neural Networks, and Transformer. Testing was performed using an external data set. We also evaluated associations with delirium billing (ICD) codes, medications, orders for restraints and sitters, direct assessments (Confusion Assessment Method [CAM] scores), and in-hospital mortality. F1 scores, confusion matrices, and areas under the receiver operating characteristic curve (AUCs) were used to compare NLP models. We used the φ coefficient to measure associations with other delirium indicators. RESULTS: The transformer NLP performed best on the following parameters: micro F1=0.978, macro F1=0.918, positive AUC=0.984, and negative AUC=0.992. NLP detections exhibited higher correlations (φ) than ICD codes with deliriogenic medications (0.194 vs 0.073 for ICD codes), restraints and sitter orders (0.358 vs 0.177), mortality (0.216 vs 0.000), and CAM scores (0.256 vs -0.028). CONCLUSIONS: Clinical notes are an attractive alternative to ICD codes for EHR delirium studies but require automated methods. Our NLP model detects delirium with high accuracy, similar to manual chart review. Our NLP approach can provide more accurate determination of delirium for large-scale EHR-based studies regarding delirium, quality improvement, and clinical trails.

4.
Applied Intelligence ; : 1-35, 2022.
Article in English | EuropePMC | ID: covidwho-1728160

ABSTRACT

When put into practice in the real world, predictive maintenance presents a set of challenges for fault detection and prognosis that are often overlooked in studies validated with data from controlled experiments, or numeric simulations. For this reason, this study aims to review the recent advancements in mechanical fault diagnosis and fault prognosis in the manufacturing industry using machine learning methods. For this systematic review, we searched Web of Science, ACM Digital Library, Science Direct, Wiley Online Library, and IEEE Xplore between January 2015 and October 2021. Full-length studies that employed machine learning algorithms to perform mechanical fault detection or fault prognosis in manufacturing equipment and presented empirical results obtained from industrial case-studies were included, except for studies not written in English or published in sources other than peer-reviewed journals with JCR Impact Factor, conference proceedings and book chapters/sections. Of 4549 records, 44 primary studies were selected. In 37 of those studies, fault diagnosis and prognosis were performed using artificial neural networks (n = 12), decision tree methods (n = 11), hybrid models (n = 8), or latent variable models (n = 6), with one of the studies employing two different types of techniques independently. The remaining studies employed a variety of machine learning techniques, ranging from rule-based models to partition-based algorithms, and only two studies approached the problem using online learning methods. The main advantages of these algorithms include high performance, the ability to uncover complex nonlinear relationships and computational efficiency, while the most important limitation is the reduction in model performance in the presence of concept drift. This review shows that, although the number of studies performed in the manufacturing industry has been increasing in recent years, additional research is necessary to address the challenges presented by real-world scenarios.

5.
JMIR Med Inform ; 9(2): e25457, 2021 Feb 10.
Article in English | MEDLINE | ID: covidwho-1032549

ABSTRACT

BACKGROUND: Medical notes are a rich source of patient data; however, the nature of unstructured text has largely precluded the use of these data for large retrospective analyses. Transforming clinical text into structured data can enable large-scale research studies with electronic health records (EHR) data. Natural language processing (NLP) can be used for text information retrieval, reducing the need for labor-intensive chart review. Here we present an application of NLP to large-scale analysis of medical records at 2 large hospitals for patients hospitalized with COVID-19. OBJECTIVE: Our study goal was to develop an NLP pipeline to classify the discharge disposition (home, inpatient rehabilitation, skilled nursing inpatient facility [SNIF], and death) of patients hospitalized with COVID-19 based on hospital discharge summary notes. METHODS: Text mining and feature engineering were applied to unstructured text from hospital discharge summaries. The study included patients with COVID-19 discharged from 2 hospitals in the Boston, Massachusetts area (Massachusetts General Hospital and Brigham and Women's Hospital) between March 10, 2020, and June 30, 2020. The data were divided into a training set (70%) and hold-out test set (30%). Discharge summaries were represented as bags-of-words consisting of single words (unigrams), bigrams, and trigrams. The number of features was reduced during training by excluding n-grams that occurred in fewer than 10% of discharge summaries, and further reduced using least absolute shrinkage and selection operator (LASSO) regularization while training a multiclass logistic regression model. Model performance was evaluated using the hold-out test set. RESULTS: The study cohort included 1737 adult patients (median age 61 [SD 18] years; 55% men; 45% White and 16% Black; 14% nonsurvivors and 61% discharged home). The model selected 179 from a vocabulary of 1056 engineered features, consisting of combinations of unigrams, bigrams, and trigrams. The top features contributing most to the classification by the model (for each outcome) were the following: "appointments specialty," "home health," and "home care" (home); "intubate" and "ARDS" (inpatient rehabilitation); "service" (SNIF); "brief assessment" and "covid" (death). The model achieved a micro-average area under the receiver operating characteristic curve value of 0.98 (95% CI 0.97-0.98) and average precision of 0.81 (95% CI 0.75-0.84) in the testing set for prediction of discharge disposition. CONCLUSIONS: A supervised learning-based NLP approach is able to classify the discharge disposition of patients hospitalized with COVID-19. This approach has the potential to accelerate and increase the scale of research on patients' discharge disposition that is possible with EHR data.

SELECTION OF CITATIONS
SEARCH DETAIL